ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 65734
УсловиеПусть M – середина основания AC равнобедренного треугольника ABC. На сторонах AB и BC отмечены соответственно точки E и F так, что AE ≠ CF и РешениеРассмотрим описанную окружность треугольника MEF. Угол между касательной и хордой MF равен ∠MEF = ∠FMC. Поэтому MC и есть касательная. Значит, центр окружности лежит на высоте BM. Следовательно, эта высота является осью симметрии рисунка. Поскольку AE ≠ CF, то окружность пересекает каждую из боковых сторон в двух точках. Причём E и F не симметричны. Два возможных случая снабжены соответствующими индексами (см. рис.). Рассмотрим их. 1) Внешний угол AE1M вписанного четырёхугольника ME1E2F2 равен углу MF2E2, а последний равен симметричному углу ME1F1, равному α.2) Вписанные углы AE2M и ME2F2, равный α опираются на симметричные дуги. Ответα. Замечания6 баллов Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|