ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 65734
Темы:    [ Признаки и свойства равнобедренного треугольника. ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Пусть M – середина основания AC равнобедренного треугольника ABC. На сторонах AB и BC отмечены соответственно точки E и F так, что  AE ≠ CF  и
FMC = ∠MEF = α.  Найдите  ∠AEM.


Решение

  Рассмотрим описанную окружность треугольника MEF. Угол между касательной и хордой MF равен  ∠MEF = ∠FMC.  Поэтому MC и есть касательная. Значит, центр окружности лежит на высоте BM. Следовательно, эта высота является осью симметрии рисунка. Поскольку  AE ≠ CF,  то окружность пересекает каждую из боковых сторон в двух точках. Причём E и F не симметричны. Два возможных случая снабжены соответствующими индексами (см. рис.). Рассмотрим их.

  1) Внешний угол AE1M вписанного четырёхугольника ME1E2F2 равен углу MF2E2, а последний равен симметричному углу  ME1F1, равному α.
  2) Вписанные углы AE2M и ME2F2, равный α опираются на симметричные дуги.


Ответ

α.

Замечания

6 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 2015/16
Номер 37
вариант
Вариант весенний тур, сложный вариант, 10-11 класс
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .