ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 275]      



Задача 56562

Тема:   [ Угол между касательной и хордой ]
Сложность: 2
Классы: 8

Две окружности пересекаются в точках P и Q. Через точку A первой окружности проведены прямые AP и AQ, пересекающие вторую окружность в точках B и C. Докажите, что касательная в точке A к первой окружности параллельна прямой BC.
Прислать комментарий     Решение


Задача 53567

Темы:   [ Угол между касательной и хордой ]
[ Вписанный угол равен половине центрального ]
Сложность: 2+
Классы: 8,9

Окружность касается одной из сторон угла в его вершине A и пересекает другую сторону в точке B. Угол равен 40°, M – точка на меньшей дуге AB.
Найдите угол AMB.

Прислать комментарий     Решение

Задача 52581

Темы:   [ Угол между касательной и хордой ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 2+
Классы: 8,9

Через конец хорды, делящей окружность в отношении 3:5, проведена касательная. Найдите острый угол между хордой и касательной.

Прислать комментарий     Решение


Задача 52583

Темы:   [ Угол между касательной и хордой ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 2+
Классы: 8,9

C — точка на продолжении диаметра AB, CD — касательная, угол ADC равен 110o. Найдите угловую величину дуги BD.

Прислать комментарий     Решение


Задача 52488

Темы:   [ Угол между касательной и хордой ]
[ Взаимное расположение двух окружностей ]
[ Вспомогательные равные треугольники ]
Сложность: 3-
Классы: 8,9

Окружность S2 проходит через центр O окружности S1 и пересекает её в точках A и B. Через точку A проведена касательная к окружности S2. Точка D – вторая точка пересечения этой касательной с окружностью S1. Докажите, что  AD = AB.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .