ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 66053
Темы:    [ Дискретное распределение ]
[ Средние величины ]
[ Классические неравенства (прочее) ]
Сложность: 3+
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Имеется n случайных векторов вида  (y1, y2, y3),  где ровно одна случайная координата равна 1, остальные равны 0. Их складывают. Получается случайный вектор a с координатами  (Y1, Y2, Y3).
  а) Найдите математическое ожидание случайной величины a².
  б) Докажите, что  


Решение

  а) Величина Yj – число единиц среди чисел yj – распределена по биномиальному закону с вероятностью  p = ⅓  и числом испытаний n. Поэтому
EYj = n/3  и  DYj = n·⅓·⅔ = 2n/9.
  Значит,  

б)  


Ответ

а)  

Замечания

баллы: 2 + 2

Источники и прецеденты использования

олимпиада
Название Заочная олимпиада по теории вероятностей и статистике
год
Дата 2017
тур
задача
Номер 12

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .