Страница: 1
2 3 >> [Всего задач: 15]
|
|
Сложность: 2+ Классы: 6,7,8,9
|
В красном ящике 100 красных шаров, а в зелёном ящике – 100 зелёных шаров. Восемь красных шаров переложили в зелёный ящик, а потом столько же шаров переложили из зелёного ящика в красный. Шары в ящиках хорошенько перемешали. Что теперь больше: вероятность вытащить наудачу из красного ящика зелёный шар или из зелёного ящика красный?
|
|
Сложность: 3 Классы: 6,7,8
|
В Солнечной долине 10 посёлков. Однажды статистики долины провели исследование численности жителей в посёлках. Обнаружили следующее.
1. Число жителей в любых двух посёлках долины отличается не более чем на 100 человек.
2. В посёлке Знойное ровно 1000 жителей, что превышает среднюю численность населения посёлков долины на 90 человек.
Сколько жителей в посёлке Радужный, который также расположен в Солнечной долине?
|
|
Сложность: 3 Классы: 8,9,10
|
По будням Рассеянный Учёный едет на работу по кольцевой линии московского метро от станции "Таганская" до станции "Киевская", а вечером – обратно (см. схему).
Войдя на станцию, Учёный садится в первый же подошедший поезд. Известно, что в обоих направлениях поезда ходят с примерно равными интервалами, причём по северному маршруту (через "Белорусскую") поезд идёт от "Киевской" до "Таганской" или обратно 17 минут, а по южному маршруту (через "Павелецкую") – 11 минут.
По давней привычке Учёный всё всегда подсчитывает. Однажды он подсчитал, что по многолетним наблюдениям:
- поезд, идущий против часовой стрелки, приходит на "Киевскую" в среднем через 1 минуту 15 секунд после того, как на неё приходит поезд, идущий по часовой стрелке. То же верно и для "Таганской".
- на поездку из дома на работу Учёный в среднем тратит на 1 минуту меньше, чем на поездку с работы домой.
Найдите математическое ожидание интервала между поездами, идущими в одном направлении.
|
|
Сложность: 3+ Классы: 6,7,8,9,10
|
В школьном совете выбирают председателя. Кандидатов четверо: А, Б, В и Г. Предложена специальная процедура – каждый член совета должен записать на специальном листке кандидатов в порядке своих предпочтений. Например, АВГБ значит, что член совета на первое место ставит А, не очень возражает против В и считает, что он лучше, чем Г, зато меньше всего хотел бы видеть председателем Б. Первое место даёт кандидату 3 очка, второе – 2 очка, третье – 1 очко, а четвёртое – 0 очков. После сбора всех листков избирательная комиссия суммирует очки у каждого кандидата. Победит тот, у кого наибольшая сумма очков.
После голосования выяснилось, что В (который набрал меньше всех очков) снимает свою кандидатуру в связи с переходом в другую школу. Заново голосовать не стали, а просто вычеркнули В из всех листков. В каждом листке осталось три кандидата. Поэтому первое место стало стоить 2 очка, второе – 1 очко, а третье – 0 очков. Очки просуммировали заново.
Могло ли случиться так, что кандидат, который прежде имел больше всех очков, после самоотвода В получил меньше всех?
|
|
Сложность: 3+ Классы: 7,8,9
|
На берёзе сидели белые и чёрные вороны – всего их было 50. Белые точно были, а чёрных было не меньше, чем белых. На дубе тоже сидели белые и чёрные вороны, и было их всего 50. На дубе чёрных тоже было не меньше, чем белых или столько же, а может быть, даже на одну меньше. Одна случайная ворона перелетела с берёзы на дуб, а через некоторое время другая (может быть, та же самая) случайная ворона перелетела с дуба на берёзу. Что более вероятно: что количество белых ворон на берёзе стало таким же, как было сначала, или что оно изменилось?
Страница: 1
2 3 >> [Всего задач: 15]