ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 66080
УсловиеНайдите все такие пары натуральных чисел a и k, что для всякого натурального n, взаимно простого c a, число akn+1 – 1 делится на n. Решение Если a = 1, то akn+1 – 1 = 0, а значит, делится на n. Ответa = 1, k – любое натуральное число. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|