ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Меньщиков А.Б.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 2]      



Задача 65666

Тема:   [ Математическая логика (прочее) ]
Сложность: 3+
Классы: 7,8,9

За круглым столом сидят 10 человек, каждый из которых либо рыцарь, который всегда говорит правду, либо лжец, который всегда лжёт. Двое из них заявили: "Оба моих соседа – лжецы", а остальные восемь заявили: "Оба моих соседа – рыцари". Сколько рыцарей могло быть среди этих 10 человек?

Прислать комментарий     Решение

Задача 66080

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Найдите все такие пары натуральных чисел a и k, что для всякого натурального n, взаимно простого c a, число  akn+1 – 1  делится на n.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .