ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 66334
Темы:    [ Упаковки ]
[ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Даны две монеты радиуса 1 см, две монеты радиуса 2 см и две монеты радиуса 3 см. Можно положить две из них на стол так, чтобы они касались друг друга, и добавлять монеты по одной так, чтобы очередная касалась хотя бы двух уже лежащих. Новую монету нельзя класть на старую. Можно ли положить несколько монет так, чтобы центры каких-то трёх монет оказались на одной прямой?


Решение

См. рисунок, на котором центры пяти монет находятся в вершинах четырёх треугольников со сторонами 3, 4, 5.


Ответ

Можно.

Замечания

4 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
номер/год
Номер 39
Дата 2017/18
вариант
Вариант осенний тур, сложный вариант, 8-9 класс
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .