ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 66333  (#1)

Тема:   [ Взвешивания ]
Сложность: 3+
Классы: 7,8,9,10,11

Имеется железная гиря в 6 кг, сахар и невесомые пакеты в неограниченном количестве, а также нестандартные весы с двумя чашами: весы находятся в равновесии, если грузы на левой и правой чашах относятся как  3 : 4.  За одно взвешивание можно положить на весы любые уже имеющиеся грузы и добавить на одну из чаш пакет с таким количеством сахара, чтобы чаши уравновесились (такие пакеты с сахаром можно использовать при дальнейших взвешиваниях). Удастся ли отмерить 1 кг сахара?

Прислать комментарий     Решение

Задача 66334  (#2)

Темы:   [ Упаковки ]
[ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9,10,11

Даны две монеты радиуса 1 см, две монеты радиуса 2 см и две монеты радиуса 3 см. Можно положить две из них на стол так, чтобы они касались друг друга, и добавлять монеты по одной так, чтобы очередная касалась хотя бы двух уже лежащих. Новую монету нельзя класть на старую. Можно ли положить несколько монет так, чтобы центры каких-то трёх монет оказались на одной прямой?

Прислать комментарий     Решение

Задача 66335  (#3)

Тема:   [ Задачи на проценты и отношения ]
Сложность: 3+
Классы: 8,9,10,11

Аналитик сделал прогноз изменения курса доллара на каждый из трёх ближайших месяцев: на сколько процентов (число, большее 0% и меньшее 100%) изменится курс за июль, на сколько – за август, и на сколько – за сентябрь. Оказалось, что про каждый месяц он верно предсказал, на сколько процентов изменится курс, но ошибся с направлением изменения (то есть если он предсказывал, что курс увеличится на $x\%$, то курс падал на $x\%$, и наоборот). При этом через три месяца курс совпал с прогнозом. В какую сторону в итоге изменился курс?

Прислать комментарий     Решение

Задача 66336  (#4)

Темы:   [ Теория алгоритмов (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Было 100 дверей, у каждой свой ключ (отпирающий только эту дверь). Двери пронумерованы числами 1, 2, ..., 100, ключи тоже, но, возможно, с ошибками: номер ключа совпадает с номером двери или отличается на 1. За одну попытку можно выбрать любой ключ, любую дверь и проверить, подходит ли этот ключ к этой двери. Можно ли гарантированно узнать, какой ключ какую дверь открывает, сделав не более
  а) 99 попыток;
  б) 75 попыток;   в) 74 попытки.

Прислать комментарий     Решение

Задача 66337  (#5)

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Десятичная система счисления ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Автор: Петров Ф.

Цифры натурального числа  $n$ > 1  записали в обратном порядке и результат умножили на $n$. Могло ли получиться число, записываемое только единицами?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .