ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 67404
Темы:    [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9,10,11
В корзину
Прислать комментарий

Условие

В каждую клетку доски $8\times 8$ вписано натуральное число так, что выполнено условие: если из одной клетки в другую можно перейти одним ходом коня, то отношение чисел в этих двух клетках является простым числом. Могло ли оказаться, что в какую-то клетку вписано число $5$, а в какую-то другую – число $6$?

Решение 1

Раскрасив доску в чёрный и белый цвета в шахматном порядке, сначала во все чёрные клетки впишем единицы, а во все белые – двойки. Затем заменим угловую единицу на 6, а соседнюю с ней двойку – на 5 (см. рисунок сверху).

Решение 2

Другой пример см. на рисунке ниже.


Ответ

Могло.

Источники и прецеденты использования

олимпиада
Название Турнир городов
год/номер
Номер 45
Дата 2023/24
вариант
Вариант осенний тур, сложный вариант, 8-9 класс
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .