ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 67404  (#1)

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9,10,11

В каждую клетку доски $8\times 8$ вписано натуральное число так, что выполнено условие: если из одной клетки в другую можно перейти одним ходом коня, то отношение чисел в этих двух клетках является простым числом. Могло ли оказаться, что в какую-то клетку вписано число $5$, а в какую-то другую – число $6$?
Прислать комментарий     Решение


Задача 67405  (#2)

Темы:   [ Площадь треугольника (через высоту и основание) ]
[ Неравенства с площадями ]
Сложность: 4
Классы: 8,9,10,11

Автор: Юран А.Ю.

В квадратном листе бумаги площади $1$ проделали дыру в форме треугольника (вершины дыры не выходят на границу листа). Докажите, что из оставшейся бумаги можно вырезать треугольник площади $\frac16$.
Прислать комментарий     Решение


Задача 67406  (#3)

Темы:   [ Оценка + пример ]
[ Теория алгоритмов (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 4
Классы: 8,9,10,11

Автор: Глебов А.

Назовём двуклетчатую карточку $2\times 1$ правильной, если в ней записаны два натуральных числа, причём число в верхней клетке меньше числа в нижней клетке. За ход разрешается изменить оба числа на карточке: либо прибавить к каждому одно и то же целое число (возможно, отрицательное), либо умножить каждое на одно и то же натуральное число, либо разделить каждое на одно и то же натуральное число; при этом карточка должна остаться правильной. За какое наименьшее количество таких ходов из любой правильной карточки можно получить любую другую правильную карточку?
Прислать комментарий     Решение


Задача 67407  (#4)

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
Сложность: 4
Классы: 8,9,10,11

Дан треугольник $ABC$ с углом $A$, равным $60^\circ$. Его вписанная окружность касается стороны $AB$ в точке $D$, а вневписанная окружность, касающаяся стороны $AC$, касается продолжения стороны $AB$ в точке $E$. Докажите, что перпендикуляр к стороне $AC$, проходящий через точку $D$, вторично пересекает вписанную окружность в точке, равноудаленной от точек $E$ и $C$. (Вневписанной называется окружность, касающаяся одной из сторон треугольника и продолжений двух других его сторон.)
Прислать комментарий     Решение


Задача 67408  (#5)

Тема:   [ Взвешивания ]
Сложность: 4
Классы: 8,9,10,11

У Васи есть $13$ одинаковых на вид гирь, но $12$ из них весят одинаково, а одна фальшивая – весит больше остальных. Также у него есть двое чашечных весов – одни правильные, а другие показывают верный результат (какая чаша тяжелее), если массы на чашах различаются, а в случае равенства могут показать что угодно (какие именно весы правильные, Вася не знает). Перед каждым взвешиванием Вася может сам выбирать весы. Докажите, что Вася может гарантированно найти фальшивую гирю за $3$ взвешивания.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .