ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 78575
Темы:    [ Взвешивания ]
[ Делимость чисел. Общие свойства ]
[ Оценка + пример ]
Сложность: 4+
Классы: 10,11
В корзину
Прислать комментарий

Условие

Имеется 11 мешков с монетами и весы с двумя чашками и стрелкой, которые показывают, на какой чашке груз тяжелее и на сколько именно. Известно, что в одном мешке все монеты фальшивые, а в остальных – все монеты настоящие. Все настоящие монеты имеют одинаковый вес, а все фальшивые – также одинаковый, но другой вес. За какое наименьшее число взвешиваний можно определить, в каком мешке лежат фальшивые монеты?


Решение

См. задачу 78572.


Ответ

За два взвешивания.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 28
Год 1965
вариант
1
Класс 10
Тур 2
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .