ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 78798
Темы:    [ Правильные многоугольники ]
[ Вспомогательные проекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Доказать, что можно расставить в вершинах правильного n-угольника действительные числа x1, x2, ..., xn, все отличные от 0, так, чтобы для любого правильного k-угольника, все вершины которого являются вершинами исходного n-угольника, сумма чисел, стоящих в его вершинах, равнялась 0.


Решение

Проведём через центр O правильного многоугольника A1...An прямую l, не проходящую через его вершины. Пусть xi равно проекции вектора на прямую, перпендикулярную l. Тогда все xi отличны от нуля. Сумма чисел xi, стоящих в вершинах правильного k-угольника, равна нулю, поскольку равна нулю соответствующая сумма векторов (см.задачу 55373 а)..

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 6
Название Многоугольники
Тема Многоугольники
параграф
Номер 6
Название Правильные многоугольники
Тема Правильные многоугольники
задача
Номер 06.065
олимпиада
Название Московская математическая олимпиада
год
Номер 34
Год 1971
вариант
Класс 9
Тур 2
задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .