ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 79381
Темы:    [ Пересекающиеся окружности ]
[ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 9,10
В корзину
Прислать комментарий

Условие

На хорде AB окружности K с центром в точке O взята точка C. D — вторая точка пересечения окружности K с окружностью, описанной около $ \Delta$ACO. Доказать, что CD = CB.

Решение

Достаточно проверить, что внешний угол ACD треугольника BCD в два раза больше угла при вершине B. Ясно, что $ \angle$ACD = $ \angle$AOD = 2$ \angle$ABD.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 43
Год 1980
вариант
Класс 9
задача
Номер 5
олимпиада
Название Московская математическая олимпиада
год
Номер 43
Год 1980
вариант
Класс 8
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .