ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 86118
Темы:    [ Системы тригонометрических уравнений и неравенств ]
[ Производная и экстремумы ]
Сложность: 3+
Классы: 11
В корзину
Прислать комментарий

Условие

Числа a и b таковы, что первое уравнение системы
{ sin x+a=bx
cos x=b

имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.

Решение

По условию функция y = sin x + a - b x обращается в нуль ровно в двух точках x1 и x2, x1 < x2.
Эти точки разбивают числовую ось на 3 промежутка (-∞, x1], (x1, x2], (x2, +∞). Поскольку b ≠ 0, а |sin x| ≤ 1, то на промежутках (-∞, x1) и (x2, +∞) функция имеет разные знаки. Поэтому на некоторых двух соседних промежутках (-∞, x1), (x1, x2) или (x1, x2), (x2, +∞) функция имеет одинаковые знаки, а тогда либо точка x1, либо точка x2 является точкой экстремума и производная в ней y' = (sin x + a - b x)' =
= cos x - b обращается в нуль.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 68
Год 2005
вариант
Класс 11, вариант А
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .