ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 97983
Темы:    [ Разложение в произведение транспозиций и циклов ]
[ Полуинварианты ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Автор: Фольклор

Числа  1, 2, 3, ..., n  записываются в некотором порядке:  a1, a2, a3, ..., an.  Берётся сумма  S = a1/1 + a2/2 + ... + an/n.  Найдите такое n, чтобы среди таких сумм (при всевозможных перестановках  a1, a2, a3, ..., an)  встретились все целые числа от n до  n + 100.

 

Решение

Записав числа по порядку, получим  S = n.  Перестановка k и 2k увеличивает S на  2k/k + k/2k – 2 = ½.  При  n = 798  мы имеем 200 непересекающихся пар вида  {k, 2k}:  {1, 2},  {3, 6},  ...,  {399, 798}.


Ответ

Например,  n = 798.

Замечания

3 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 1988/1989
Номер 10
вариант
Вариант осенний тур, основной вариант, 7-8 класс
Задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .