ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 >> [Всего задач: 13]      



Задача 88217

Темы:   [ Разложение в произведение транспозиций и циклов ]
[ Раскраски ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 6,7,8

В городе Васюки у всех семей были отдельные дома. В один прекрасный день каждая семья переехала в дом, который раньше занимала другая семья. В связи с этим было решено покрасить все дома в красный, синий или зелёный цвет, причём так, чтобы для каждой семьи цвет нового и старого домов не совпадал. Можно ли это сделать?

Прислать комментарий     Решение

Задача 97936

 [Обмены квартир]
Темы:   [ Разложение в произведение транспозиций и циклов ]
[ Композиции симметрий ]
[ Группа перестановок ]
Сложность: 3+
Классы: 8,9,10

В некотором городе разрешаются только парные обмены квартир (если две семьи обмениваются квартирами, то в тот же день они не имеют права участвовать в другом обмене). Докажите, что любой сложный обмен квартирами можно осуществить за два дня.
(Предполагается, что при любых обменах каждая семья как до, так и после обмена занимает одну квартиру, и что семьи при этом сохраняются).

Прислать комментарий     Решение

Задача 111804

Темы:   [ Разложение в произведение транспозиций и циклов ]
[ Индукция (прочее) ]
[ Принцип крайнего (прочее) ]
[ Процессы и операции ]
Сложность: 4-
Классы: 8,9,10

В очереди к стоматологу стоят 30 ребят: мальчиков и девочек. Часы на стене показывают 8:00. Как только начинается новая минута, каждый мальчик, за которым стоит девочка, пропускает её вперед. Докажите, что перестановки в очереди закончатся до 8:30, когда откроется дверь кабинета.

Прислать комментарий     Решение

Задача 78627

Темы:   [ Разложение в произведение транспозиций и циклов ]
[ Процессы и операции ]
Сложность: 4-
Классы: 8,9,10

Испанский король решил перевесить по-своему портреты своих предшественников в круглой башне замка. Однако он хочет, чтобы за один раз меняли местами только два портрета, висящие рядом, причём это не должны быть портреты двух королей, один из которых царствовал сразу после другого. Кроме того, ему важно лишь взаимное расположение портретов, и два расположения, отличающиеся поворотом круга, он считает одинаковыми. Доказать, что как бы сначала ни висели портреты, король может по этим правилам добиться любого нового их расположения.

Прислать комментарий     Решение

Задача 97762

Темы:   [ Разложение в произведение транспозиций и циклов ]
[ Перебор случаев ]
[ Делимость чисел. Общие свойства ]
Сложность: 4
Классы: 9,10,11

Автор: Фольклор

a1, a2, ..., a101  – такая перестановка чисел  2, 3, ..., 102,  что ak делится на k при каждом k. Найти все такие перестановки.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .