ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 97997
Темы:    [ Выделение полного квадрата. Суммы квадратов ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3-
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Автор: Назаров Ф.

Положительные числа a, b, c таковы, что  a ≥ b ≥ c  и  a + b + c ≤ 1.  Докажите, что  a² + 3b² + 5c² ≤ 1.


Решение

1 ≥ (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac ≥ a² + b² + c² + 2b² + 2c² + 2c² = a² + 3b² + 5c².

Замечания

1. Ср. с задачей 98007.

2. 3 балла.

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 1988/1989
Номер 10
вариант
Вариант весенний тур, тренировочный вариант, 7-8 класс
Задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .