ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 98239
Темы:    [ Неравенство треугольника (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Остовы многогранных фигур ]
[ Тетраэдр (прочее) ]
Сложность: 3+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Докажите, что из шести ребер тетраэдра можно сложить два треугольника.


Решение

Пусть AB – наибольшее ребро тетраэдра ABCD. Можно считать, что AC не короче BD. Тогда первый треугольник – BCD, а второй треугольник получим, заменив в треугольнике ABD ребро BD на большее   AC.

Замечания

4 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 16
Дата 1994/1995
вариант
Вариант осенний тур, тренировочный вариант, 10-11 класс
Задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .