Страница: 1
2 3 4 >> [Всего задач: 17]
|
|
Сложность: 3+ Классы: 9,10,11
|
Имеется выпуклый многогранник со 100 рёбрами. Все его вершины срезали плоскостями-ножами близко от самих вершин (то есть так, чтобы плоскости-ножи не пересекались друг с другом внутри или на границе многогранника). Найдите у полученного многогранника
a) число вершин;
б) число рёбер.
|
|
Сложность: 3+ Классы: 10,11
|
Существует ли многогранник (не обязательно выпуклый), полных список рёбер
которого имеет вид: AB, AC, BC, BD, CD, DE, EF, EG, FG, FH, GH, AH
(на рисунке приведена схема соединения рёбер)?
|
|
Сложность: 4- Классы: 10,11
|
Какую наименьшую длину должен иметь кусок проволоки, чтобы из него можно было согнуть каркас куба с ребром 10 см?
(Проволока может проходить по одному ребру дважды, загибаться на 90° и 180°, но ломать её нельзя.)
|
|
Сложность: 4- Классы: 7,8,9
|
Каждая деталь конструктора "Юный паяльщик" – это скобка в виде буквы П, состоящая из трёх единичных отрезков. Можно ли из деталей этого конструктора спаять полный проволочный каркас куба 2×2×2, разбитого на кубики 1×1×1? (Каркас состоит из 27 точек, соединённых единичными отрезками; любые две соседние точки должны быть соединены ровно одним проволочным отрезком.)
|
|
Сложность: 3 Классы: 6,7,8
|
Муравей ползает по проволочному каркасу куба, при этом он никогда не
поворачивает назад.
Может ли случиться, что в одной вершине он побывал 25 раз, а в каждой из остальных – по 20 раз?
Страница: 1
2 3 4 >> [Всего задач: 17]