ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 98320
Условиеа) Квадрат разрезан на равные прямоугольные треугольники с катетами 3 и 4 каждый. Докажите, что число треугольников чётно. б) Прямоугольник разрезан на равные прямоугольные треугольники с катетами 1 и 2 каждый. Докажите, что число треугольников чётно. Решениеа) Сторона квадрата сложена из отрезков длины 3, 4, 5, поэтому её длина a – целое число. Площадь треугольника равна 6, следовательно, число треугольников k = a²/6. Отсюда a чётно, a² делится на 4 и k чётно. б) Периметр каждого треугольника равен 3 + . Подсчитаем сумму периметров всех треугольников двумя способами. Во-первых, она равна k(3 + ), где k – число треугольников. Во-вторых, каждая сторона треугольника лежит либо на стороне прямоугольника, либо на одном из разрезов. Так как к каждому разрезу треугольники приставлены с двух сторон, то сумма периметров всех треугольников равна периметру прямоугольника плюс удвоенная сумма длин разрезов. Длина каждого разреза и длины сторон прямоугольника имеют вид p + q, где p и q – целые. Отсюда k(3 + ) = 2m + 2n (m, n целые). Значит, 3k = 2m и k чётно. Замечаниябаллы: 2 + 4 Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|