Страница:
<< 11 12 13 14 15
16 17 >> [Всего задач: 82]
|
|
Сложность: 4+ Классы: 9,10,11
|
Существует ли выпуклый многогранник, одно из сечений которого – треугольник (сечение не проходит через вершины), и в каждой вершине сходятся
а) не меньше пяти рёбер,
б) ровно пять рёбер?
|
|
Сложность: 4+ Классы: 8,9,10
|
Положительные числа a, b и c таковы, что abc = 1. Докажите неравенство
Через две вершины треугольника проведены прямые,
разбивающие его на три треугольника и четырёхугольник.
а) Могут ли площади всех четырёх частей быть равны?
б) Какие три из этих частей могут иметь равные площади? Во
сколько раз отличается от них площадь четвёртой части?
В неравнобедренном треугольнике
ABC проведены медианы
AK и
BL . Углы
BAK и
CBL равны
30
o .
Найдите углы треугольника
ABC .
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Даны две картофелины произвольной формы и размера.
Докажите, что по поверхности каждой из них можно проложить по проволочке
так, что получатся два изогнутых колечка (не обязательно плоских), одинаковых
по форме и размеру.
Страница:
<< 11 12 13 14 15
16 17 >> [Всего задач: 82]