ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все авторы
>>
Куланин Е.
|
||||||||||||||||||||||||||||||||
Страница: 1 [Всего задач: 2]
Дана фиксированная хорда MN окружности, не являющаяся диаметром. Для каждого диаметра AB этой окружности, не проходящего через точки M и N, рассмотрим точку C, в которой пересекаются прямые AM и BN, и проведём через неё прямую l, перпендикулярную AB. Докажите, что все прямые l проходят через одну точку.
Для данной хорды MN окружности рассматриваются треугольники ABC, основаниями которых являются диаметры AB этой окружности, не пересекающие MN, а стороны AC и BC проходят через концы M и N хорды MN. Докажите, что высоты всех таких треугольников ABC, опущенные из вершины C на сторону AB, пересекаются в одной точке.
Страница: 1 [Всего задач: 2] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|