ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Меркурьев А.С.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 2]      



Задача 52517

Темы:   [ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

В трапеции ABCD с основаниями BC и AD на сторонах AB и CD выбраны точки K и M. Докажите, что если $ \angle$BAM = $ \angle$CDK, то $ \angle$BMA = $ \angle$CKD.

Прислать комментарий     Решение


Задача 55768

Темы:   [ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
Сложность: 4+
Классы: 8,9

Вписанная окружность треугольника ABC касается стороны AC в точке D, DM — диаметр окружности. Прямая BM пересекает сторону AC в точке K. Докажите, что AK = DC.

Прислать комментарий     Решение


Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .