Страница:
<< 1 2
3 4 5 >> [Всего задач: 22]
|
|
Сложность: 3 Классы: 9,10,11
|
На экране компьютера напечатано натуральное число, делящееся на 7, а курсор находится в промежутке между некоторыми двумя его соседними цифрами. Докажите, что существует такая цифра, что, если ее впечатать в этот промежуток любое число раз, то все получившиеся числа также будут делиться на 7.
Например, все числа 259, 2569, 25669, 256669, ..., а также 2359, 23359, 233359, ... делятся на 7.
|
|
Сложность: 3 Классы: 7,8,9
|
Докажите, что все числа 10017, 100117, 1001117, ... делятся на 53.
|
|
Сложность: 3 Классы: 7,8,9
|
Докажите, что в любом выпуклом многоугольнике
имеется не более 35 углов, меньших
170
o .
|
|
Сложность: 3 Классы: 7,8,9,10,11
|
На едином экзамене 333 ученика допустили в общей сложности 1000 ошибок.
Возможно ли при этом, что учеников, сделавших более чем по 5 ошибок, оказалось больше, чем учеников, сделавших менее чем по 4 ошибки?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
На шахматном турнире для 12 участников каждый сыграл ровно по одной партии с каждым из остальных. За выигрыш давали 1 очко, за ничью – ½, за проигрыш – 0. Вася проиграл только одну партию, но занял последнее место,
набрав меньше всех очков. Петя занял первое место, набрав больше всех очков. На сколько очков Вася отстал от Пети?
Страница:
<< 1 2
3 4 5 >> [Всего задач: 22]