Страница: 1
2 >> [Всего задач: 7]
Каждые два из n блоков ЭВМ соединены проводом. Можно ли каждый из этих проводов покрасить в один из n – 1 цветов так, чтобы от каждого блока отходил n – 1 провод разного цвета, если а) n = 6; б) n = 13?
|
|
Сложность: 3+ Классы: 8,9,10
|
Каждые две из шести ЭВМ соединены своим проводом. Укажите, как раскрасить каждый из этих проводов в один из пяти цветов так, чтобы из каждой ЭВМ выходило пять проводов разного цвета.
|
|
Сложность: 4- Классы: 10,11
|
Значение a подобрано так, что число корней первого из уравнений
4x – 4–x = 2 cos ax, 4x + 4–x = 2 cos ax + 4 равно 2007.
Сколько корней при том же a имеет второе уравнение?
|
|
Сложность: 4 Классы: 8,9,10
|
По кругу выписано несколько чисел. Если для некоторых четырёх идущих подряд чисел a, b, c, d произведение чисел a – d и b – c отрицательно, то числа b и c можно поменять местами. Докажите, что такие операции можно проделать лишь конечное число раз.
|
|
Сложность: 4 Классы: 8,9,10,11
|
В таблице размера n×n клеток: две противоположные угловые клетки – чёрные, а остальные – белые. Какое наименьшее количество белых клеток достаточно перекрасить в чёрный цвет, чтобы после этого с помощью
преобразований, состоящих в перекрашивании всех клеток какого-либо столбца или какой-либо строки в противоположный цвет, можно было сделать чёрными все клетки таблицы?
Страница: 1
2 >> [Всего задач: 7]