Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 135]
|
|
Сложность: 3 Классы: 8,9,10,11
|
В выпуклом 12-угольнике все углы равны. Известно, что длины каких-то десяти его сторон равны 1, а длина ещё одной равна 2. Чему может быть равна площадь этого 12- угольника?
|
|
Сложность: 3 Классы: 6,7,8,9
|
Можно ли раскрасить все натуральные числа, большие 1, в три цвета (каждое число – в один цвет, все три цвета должны использоваться) так, чтобы цвет произведения любых двух чисел разного цвета отличался от цвета каждого из сомножителей?
|
|
Сложность: 3 Классы: 5,6,7,8
|
Аня называет дату красивой, если все 6 цифр её записи различны. Например, 19.04.23 — красивая дата, а 19.02.23 и 01.06.23 — нет. А сколько всего красивых дат в 2023 году?
|
|
Сложность: 3 Классы: 7,8,9
|
Даны три различных ненулевых числа. Петя и Вася составляют квадратные уравнения, подставляя эти числа в качестве коэффициентов, но каждый раз в новом порядке. Если у уравнения есть хотя бы один корень, то Петя получает фантик, а если ни одного, то фантик достаётся Васе. Первые три фантика достались Пете, а следующие два — Васе. Можно ли определить, кому достанется последний, шестой фантик?
|
|
Сложность: 3 Классы: 7,8,9
|
На столе в ряд стоят $23$ шкатулки, в одной из которых находится приз. На каждой шкатулке написано либо «Здесь приза нет», либо «Приз в соседней шкатулке». Известно, что ровно одно из этих утверждений правдиво. Что написано на средней шкатулке?
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 135]