Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 141]
|
|
Сложность: 3 Классы: 6,7,8,9
|
На урок физкультуры пришло $12$ детей, все разной силы. Учитель $10$ раз делил их на две команды по $6$ человек, каждый раз новым способом, и проводил состязание по перетягиванию каната. Могло ли оказаться так, что все $10$ раз состязание закончилось вничью (то есть суммы сил детей в командах были равны)?
|
|
Сложность: 3 Классы: 6,7,8
|
Правильный треугольник сложен из одинаковых прямоугольных (красных) и одинаковых равнобедренных (зелёных) треугольников так, как показано на рисунке.
Чему равна площадь правильного треугольника, если площадь зелёного треугольника равна 1? При необходимости округлите ответ до двух знаков после запятой.

|
|
Сложность: 3 Классы: 8,9,10,11
|
Вершины $M$, $N$, $K$ прямоугольника $KLMN$ лежат на сторонах $AB$, $BC$, $CA$ соответственно правильного треугольника $ABC$ так, что $AM=2$, $KC=1$, а вершина $L$ лежит вне треугольника. Найдите угол $KMN$.
|
|
Сложность: 3 Классы: 5,6,7,8
|
Квадрат $10\times10$ клеток надо покрыть полосками $1\times9$ клеток. Сделайте это так, чтобы каждая клетка была покрыта одной или двумя полосками, но никакой прямоугольник $1\times2$ не был покрыт в два слоя. (Полоски кладут по линиям сетки горизонтально или вертикально, полоски не должны выходить за границу квадрата.)
Расставьте на шахматной доске 32 коня так, чтобы каждый из них бил ровно двух других.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 141]