Страница: 1 [Всего задач: 3]
|
|
Сложность: 4 Классы: 8,9,10
|
Вокруг треугольника ABC с острым углом C описана окружность. На дуге AB, не содержащей точку C, выбрана точка D. Точка D' симметрична точке D относительно прямой AB. Прямые AD' и BD' пересекают стороны BC и AC в точках E и F. Пусть точка C движется по своей дуге AB. Докажите, что центр описанной окружности треугольника CEF движется по прямой.
Дан треугольник ABC. Точка P лежит на описанной окружности треугольника ABH, где H – ортоцентр треугольника ABC. Прямые AP, BP пересекают противоположные стороны треугольника в точках A', B'. Найдите геометрическое место середин отрезков A'B'.
|
|
Сложность: 5 Классы: 10,11
|
Окружности $\alpha$, $\beta$, $\gamma$ касаются друг друга внешним образом и касаются изнутри окружности $\Omega$ в точках $A_1$, $B_1$, $C_1$ соответственно. Общая внутренняя касательная к $\alpha$ и $\beta$ пересекает не содержащую $C_1$ дугу $A_1B_1$ в точке $C_2$. Точки $A_2$, $B_2$ определяются аналогично. Докажите, что прямые $A_1A_2$, $B_1B_2$, $C_1C_2$ пересекаются в одной точке.
Страница: 1 [Всего задач: 3]