ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Изместьев И.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 [Всего задач: 12]      



Задача 109866

Темы:   [ Метод координат на плоскости ]
[ Целочисленные решетки (прочее) ]
[ Покрытия ]
Сложность: 5-
Классы: 9,10,11

На прямоугольном столе разложено несколько одинаковых квадратных листов бумаги так, что их стороны параллельны краям стола (листы могут перекрываться). Докажите, что можно воткнуть несколько булавок таким образом, что каждый лист будет прикреплен к столу ровно одной булавкой.
Прислать комментарий     Решение


Задача 109891

Темы:   [ Раскраски ]
[ Системы точек ]
[ Разбиения на пары и группы; биекции ]
[ Подсчет двумя способами ]
[ Покрытия ]
Сложность: 5
Классы: 8,9,10,11

На прямой через равные промежутки отмечены 1996 точек. Петя раскрашивает половину из них в красный цвет, а остальные – в синий. Затем Вася разбивает их на пары красная-синяя так, чтобы сумма расстояний между точками в парах была максимальной. Докажите, что этот максимум не зависит от того, какую раскраску сделал Петя.
Прислать комментарий     Решение


Страница: << 1 2 3 [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .