Страница:
<< 1 2 3 [Всего задач: 12]
|
|
Сложность: 5- Классы: 9,10,11
|
На прямоугольном столе разложено несколько одинаковых квадратных листов бумаги так, что их стороны
параллельны краям стола (листы могут перекрываться). Докажите, что можно воткнуть несколько булавок
таким образом, что каждый лист будет прикреплен к столу ровно одной булавкой.
|
|
Сложность: 5 Классы: 8,9,10,11
|
На прямой через равные промежутки отмечены 1996 точек. Петя
раскрашивает половину из них в красный цвет, а остальные – в синий. Затем
Вася разбивает их на пары красная-синяя так, чтобы сумма расстояний
между точками в парах была максимальной. Докажите, что этот максимум не
зависит от того, какую раскраску сделал Петя.
Страница:
<< 1 2 3 [Всего задач: 12]