Страница: 1 [Всего задач: 3]
|
|
Сложность: 3- Классы: 6,7,8
|
Коля и Макс живут в городе с треугольной сеткой дорог (см. рисунок). В этом городе передвигаются на велосипедах, при этом разрешается поворачивать только налево. Коля поехал в гости к Максу и по дороге сделал ровно 4 поворота налево. На следующий день Макс поехал к Коле и приехал к нему, совершив только один поворот налево. Оказалось, что длины их маршрутов одинаковы. Изобразите, каким образом они могли ехать (дома Коли и Макса отмечены).
Есть 16 кубиков, каждая грань которых покрашена в белый, чёрный или красный цвет (различные кубики могут быть покрашены по-разному). Посмотрев на их раскраску, барон Мюнхгаузен сказал, что может так поставить их на стол, что будет виден только белый цвет, может поставить так, что будет виден только чёрный, а может и так, что будет виден только красный. Могут ли его слова быть правдой?
|
|
Сложность: 4- Классы: 6,7,8
|
У Буратино есть пять монет, ровно одна из них – фальшивая. Какая именно – известно только Коту Базилио. Буратино может выбрать три монеты, одну из них отдать Коту, и за это узнать про другие две, есть ли среди них фальшивая.
Буратино знает, что Кот за настоящую монету скажет правду, а за фальшивую – соврёт. Как Буратино определить фальшивую монету среди всех пяти, задав не более трёх вопросов?
Страница: 1 [Всего задач: 3]