ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Tran Quang Hung

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 [Всего задач: 10]      



Задача 66305

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Трапеции (прочее) ]
[ Вписанные и описанные окружности ]
[ Вписанный угол равен половине центрального ]
[ Гомотетия помогает решить задачу ]
[ Замечательное свойство трапеции ]
Сложность: 4
Классы: 8,9

Автор: Tran Quang Hung

Вокруг квадрата ABCD описана окружность. Точка P лежит на дуге CD этой окружности, не содержащей других вершин квадрата. Прямые PA, PB пересекают диагонали BD, AC соответственно в точках K, L. Точки M, N – проекции K, L соответственно на CD, а Q – точка пересечения прямых KN и ML. Докажите, что прямая PQ делит отрезок AB пополам.

Прислать комментарий     Решение

Задача 66955

Темы:   [ Вписанные и описанные окружности ]
[ Общая касательная к двум окружностям ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Автор: Tran Quang Hung

Точка $P$ лежит внутри выпуклого четырехугольника $ABCD$. Общие внутренние касательные к вписанным окружностям треугольников $PAB$ и $PCD$ пересекаются в точке $Q$, а общие внутренние касательные к вписанным окружностям треугольников $PBC$ и $PAD$ – в точке $R$. Докажите, что $P$, $Q$, $R$ лежат на одной прямой.
Прислать комментарий     Решение


Задача 66815

Темы:   [ ГМТ - прямая или отрезок ]
[ Вневписанные окружности ]
[ Общая касательная к двум окружностям ]
[ Вспомогательные подобные треугольники ]
Сложность: 5
Классы: 9,10,11

Автор: Tran Quang Hung

Пусть $P$ – произвольная точка на стороне $BC$ треугольника $ABC$, $K$ – центр вписанной окружности треугольника $PAB$, а $F$ – точка касания вписанной окружности треугольника $PAC$ со стороной $BC$. Точка $G$ на $CK$ такова, что $FG\parallel PK$. Найдите геометрическое место точек $G$.
Прислать комментарий     Решение


Задача 67251

Темы:   [ Инверсия помогает решить задачу ]
[ Радикальная ось ]
[ Вспомогательные подобные треугольники ]
[ Теорема синусов ]
Сложность: 5
Классы: 9,10,11

Автор: Tran Quang Hung

Пусть $E$ – проекция вершины $C$ прямоугольника $ABCD$ на диагональ $BD$. Докажите, что общие внешние касательные к окружностям $AEB$ и $AED$ пересекаются на окружности $AEC$.
Прислать комментарий     Решение


Задача 67229

Темы:   [ Тетраэдр (прочее) ]
[ Сфера, описанная около тетраэдра ]
[ Радикальная плоскость ]
Сложность: 6+
Классы: 10,11

Автор: Tran Quang Hung

Дан тетраэдр $ABCD$. Прямая $\ell$ пересекает плоскости $ABC$, $BCD$, $CDA$, $DAB$ в точках $D_0$, $A_0$, $B_0$, $C_0$ соответственно. Пусть $P$ – произвольная точка, не лежащая на прямой $\ell$ и в плоскостях граней тетраэдра, а $A_1$, $B_1$, $C_1$, $D_1$ – вторые точки пересечения прямых $PA_0$, $PB_0$, $PC_0$, $PD_0$ со сферами $PBCD$, $PCDA$, $PDAB$, $PABC$ соответственно. Докажите, что $P$, $A_1$, $B_1$, $C_1$, $D_1$ лежат на одной окружности.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .