ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Чанакчи И.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 2]      



Задача 66758

Темы:   [ Замощения костями домино и плитками ]
[ Функция Эйлера ]
[ Индукция в геометрии ]
Сложность: 4+
Классы: 8,9,10,11

Рассмотрим на клетчатой плоскости такие ломаные с началом в точке (0, 0) и вершинами в целых точках, что каждое очередное звено идёт по сторонам клеток либо вверх, либо вправо. Каждой такой ломаной соответствует червяк – фигура, состоящая из клеток плоскости, имеющих хотя бы одну общую точку с этой ломаной. Докажите, что червяков, которые можно разбить на двуклеточные доминошки ровно  $n > 2$  различными способами, столько же, сколько натуральных чисел, меньших $n$ и взаимно простых с $n$. (Червяки разные, если состоят из разных наборов клеток.)

Прислать комментарий     Решение

Задача 66608

Темы:   [ Разрезания, разбиения, покрытия и замощения ]
[ Замощения костями домино и плитками ]
Сложность: 6
Классы: 9,10,11

Рассмотрим на клетчатой плоскости такие ломаные с началом в точке $(0,0)$ и вершинами в точках с целыми координатами, что каждое очередное звено идет по сторонам клеток либо вверх, либо вправо. Каждой такой ломаной соответствует червяк — фигура, состоящая из клеток плоскости, имеющих хотя бы одну общую точку с этой ломаной. Докажите, что червяков, которых можно разбить на двуклеточные доминошки ровно $n>2$ различными способами, столько же, сколько натуральных чисел, меньших $n$ и взаимно простых с $n$. (Червяки разные, если состоят из разных наборов клеток.)
Прислать комментарий     Решение


Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .