Страница: 1 [Всего задач: 3]
|
|
Сложность: 3+ Классы: 9,10,11
|
В треугольнике $ABC$ $AL_a$, $BL_b$, $CL_c$ – биссектрисы, $K_a$ – точка пересечения касательных к описанной окружности в вершинах $B$ и $C$; $K_b$, $K_c$ определены аналогично. Докажите, что прямые $K_aL_a$, $K_bL_b$ и $K_cL_c$ пересекаются в одной точке.
|
|
Сложность: 4 Классы: 8,9,10,11
|
В треугольнике $ABC$ $I$ – центр вписанной окружности, вневписанная окружность с центром $I_A$ касается стороны $BC$ в точке $A'$. Через $I$ проведена прямая $l\perp BI$. Оказалось, что $l$ пересекает $I_AA'$ в точке $K$, лежащей на средней линии, параллельной $BC$. Докажите, что $\angle B\leq 60^{\circ}$.
|
|
Сложность: 4+ Классы: 8,9,10,11
|
В треугольнике $ABC$ $\angle A=60^{\circ}$, $AD$ – биссектриса. Построен равносторонний треугольник $PDQ$ с высотой $DA$. Прямые $PB$ и $QC$ пересекаются в точке $K$. Докажите, что $AK$ – симедиана треугольника $ABC$.
Страница: 1 [Всего задач: 3]