ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Dadgarnia A.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 2]      



Задача 66809

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 9,10,11

Автор: Dadgarnia A.

В треугольнике $ABC$ $\angle A= 45^{\circ}$. Точка $A'$ диаметрально противоположна $A$ на описанной окружности треугольника. Точки $E$, $F$ на сторонах $AB$, $AC$ соответственно таковы. что $A'B=BE$, $A'C=CF$. Пусть $K$ – вторая точка пересечения окружностей $AEF$ и $ABC$. Докажите, что прямая $EF$ делит пополам отрезок $A'K$.
Прислать комментарий     Решение


Задача 66976

Темы:   [ Описанные четырехугольники ]
[ Вписанные и описанные окружности ]
[ Касающиеся окружности ]
[ Инверсия помогает решить задачу ]
[ Прямая Гаусса ]
[ Радикальная ось ]
Сложность: 4+
Классы: 9,10,11

Автор: Dadgarnia A.

Четырехугольник $ABCD$ описан около окружности $\omega$ с центром $I$. Прямые $AC$ и $BD$ пересекаются в точке $P$, $AB$ и $CD$ – в точке $E$, $AD$ и $BC$ – в точке $F$. Точка $K$ на описанной окружности треугольника $EIF$ такова, что $\angle IKP=90^{\circ}$. Луч $PK$ пересекает $\omega$ в точке $Q$. Докажите, что описанная окружность треугольника $EQF$ касается $\omega$.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .