ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Скопенков А.Б.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 [Всего задач: 11]      



Задача 66791

Тема:   [ Комбинаторная геометрия (прочее) ]
Сложность: 6
Классы: 10,11

На плоскости даны две замкнутые ломаные $a,b$ (возможно, самопересекающиеся) и точки $K$, $L$, $M$, $N$. Вершины ломаных и эти точки находятся в общем положении (т.е. никакие три из них не лежат на прямой и никакие три отрезка, их соединяющие, не имеют общей внутренней точки). Каждый из отрезков $KL$ и $MN$ пересекает ломаную $a$ в четном количестве точек, а каждый из отрезков $LM$ и $NK$ – в нечетном. Ломаная $b$, наоборот, пересекает каждый из отрезков $KL$ и $MN$ в нечетном количестве точек, а каждый из отрезков $LM$ и $NK$ – в четном. Докажите, что ломаные $a$ и $b$ пересекаются.
Прислать комментарий     Решение


Страница: << 1 2 3 [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .