ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Скопенков А.Б.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 3 >> [Всего задач: 11]      



Задача 64682

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Доказательство от противного ]
Сложность: 3
Классы: 6,7,8

На русско-французской встрече не было представителей других стран. Суммарное количество денег у французов оказалось больше суммарного количества денег у россиян, и суммарное количество денег у женщин оказалось больше суммарного количества денег у мужчин.
Обязательно ли на встрече была француженка?

Прислать комментарий     Решение

Задача 109909

Темы:   [ Объединение, пересечение и разность множеств ]
[ Математическая логика (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Члены Государственной Думы образовали фракции так, что для любых двух фракций A и B (не обязательно различных) – тоже фракция (через обозначается множество всех членов Думы, не входящих в C ). Докажите, что для любых двух фракций A и B A B – также фракция.
Прислать комментарий     Решение


Задача 67219

Темы:   [ Центральная симметрия (прочее) ]
[ Четность и нечетность ]
[ Топология (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Замкнутая, возможно, самопересекающаяся ломаная симметрична относительно не лежащей на ней точки $O$. Докажите, что число оборотов ломаной вокруг $O$ нечётно. (Числом оборотов вокруг $O$ называется сумма ориентированных углов $$\angle A_1OA_2+\angle A_2OA_3+\ldots+\angle A_{n-1}OA_n+\angle A_nOA_1,$$ делённая на $2\pi$.)
Прислать комментарий     Решение


Задача 86120

Темы:   [ Геометрия на клетчатой бумаге ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9,10

Доска размером 2005×2005 разделена на квадратные клетки со стороной единица. Некоторые клетки доски в каком-то порядке занумерованы числами 1, 2, ... так, что на расстоянии, меньшем 10, от любой незанумерованной клетки найдется занумерованная клетка. Докажите, что найдутся две клетки на расстоянии, меньшем 150, которые занумерованы числами, различающимися более, чем на 23. (Расстояние между клетками – это расстояние между их центрами.)

Прислать комментарий     Решение

Задача 66959

Темы:   [ Системы точек и отрезков (прочее) ]
[ Четность и нечетность ]
Сложность: 4
Классы: 10,11

В пространстве даны шесть точек общего положения. Для каждых двух из них покрасим красным точки пересечения (если они есть) отрезка между ними и поверхности тетраэдра с вершинами в четырех оставшихся точках. Докажите, что число красных точек четно.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .