Страница: 1
2 3 >> [Всего задач: 11]
|
|
Сложность: 3 Классы: 6,7,8
|
На русско-французской встрече не было представителей других стран. Суммарное количество денег у французов оказалось больше суммарного количества денег у россиян, и суммарное количество денег у женщин оказалось больше суммарного количества денег у мужчин.
Обязательно ли на встрече была француженка?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Члены Государственной Думы образовали фракции так,
что для любых двух фракций
A и
B (не обязательно различных)
– тоже фракция (через
обозначается множество всех членов Думы, не входящих в
C ).
Докажите, что для любых двух фракций
A и
B A B –
также фракция.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Замкнутая, возможно, самопересекающаяся ломаная симметрична относительно не лежащей на ней точки $O$. Докажите, что число оборотов ломаной вокруг $O$ нечётно. (
Числом оборотов вокруг $O$ называется сумма ориентированных углов $$\angle A_1OA_2+\angle A_2OA_3+\ldots+\angle A_{n-1}OA_n+\angle A_nOA_1,$$ делённая на $2\pi$.)
|
|
Сложность: 4- Классы: 8,9,10
|
Доска размером 2005×2005 разделена на квадратные клетки со стороной единица. Некоторые клетки доски в каком-то порядке занумерованы числами 1, 2, ... так, что на расстоянии, меньшем 10, от любой незанумерованной клетки найдется занумерованная клетка. Докажите, что найдутся две клетки на расстоянии, меньшем 150, которые занумерованы числами, различающимися более, чем на 23.
(Расстояние между клетками – это расстояние между их центрами.)
|
|
Сложность: 4 Классы: 10,11
|
В пространстве даны шесть точек общего положения. Для каждых двух из них покрасим красным точки пересечения (если они есть) отрезка между ними и поверхности тетраэдра с вершинами в четырех оставшихся точках. Докажите, что число красных точек четно.
Страница: 1
2 3 >> [Всего задач: 11]