Страница: 1 [Всего задач: 5]
Задача
78721
(#М61)
|
|
Сложность: 5- Классы: 8,9,10
|
Два мудреца играют в следующую игру. Выписаны числа 0, 1, 2,..., 1024. Первый
мудрец зачёркивает 512 чисел (по своему выбору), второй зачёркивает 256 из
оставшихся, затем снова первый зачёркивает 128 чисел и т.д. На десятом шаге
второй мудрец зачёркивает одно число; остаются два числа. После этого
второй мудрец платит первому разницу между этими числами. Как выгоднее играть
первому мудрецу? Как второму? Сколько уплатит второй мудрец первому, если оба
будут играть наилучшим образом? (Ср. с задачей
78710 и с задачей
78716.)
Задача
73597
(#М62)
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что для любого нечётного натурального числа a существует такое натуральное число b, что 2b – 1 делится на a.
Задача
73598
(#М63)
|
|
Сложность: 4- Классы: 7,8,9
|
Можно ли из 18 плиток размером 1×2 выложить квадрат так, чтобы при этом не было ни одного прямого "шва", соeдиняющего противоположные стороны квадрата и идущего по краям плиток? Например, такое расположение плиток, как на рисунке, не годится, так как здесь есть красный "шов".
Задача
55240
(#М64)
|
|
Сложность: 4+ Классы: 8,9
|
На плоскости даны прямая l и две точки P и Q, лежащие по
одну сторону от неё. Найдите на прямой l такую точку M, для
которой расстояние между основаниями высот треугольника PQM, опущенных на стороны PM и QM, наименьшее.
Задача
73600
(#М65)
|
|
Сложность: 4 Классы: 8,9
|
|
а) Пусть 0 < k < 1. На сторонах AB, BC и CA треугольника ABC отметим точки E, А и G таким образом, что
AE : EB = BF : FC = CG : GA = k.
Найдите отношение площади треугольника, образованного прямыми АF, BG и CE, к площади треугольника АВС (см. рис.).
б) Разрежьте треугольник шестью прямыми на такие части, из которых можно сложить семь равных треугольников.
|
Страница: 1 [Всего задач: 5]