Страница:
<< 1 2 3 4 5
6 7 >> [Всего задач: 35]
|
|
Сложность: 3+ Классы: 10,11
|
Два концентрических круга поделены на 2
k равных секторов. Каждый сектор
выкрашен в белый или чёрный цвет. Доказать, что если белых и чёрных секторов
на каждом круге одинаковое количество, то можно сделать такой поворот, что по
крайней мере на половине длины окружности будут соприкасаться разноцветные
куски.
|
|
Сложность: 4- Классы: 8,9,10
|
Можно ли расположить все трёхзначные числа, не оканчивающиеся нулями, в последовательности так, чтобы последняя цифра каждого числа была равна первой цифре следующего за ним?
Как должна двигаться ладья по шахматной доске, чтобы побывать на каждом поле по
одному разу и сделать наименьшее число поворотов?
Доказать, что в любом шестизначном числе можно переставить цифры так, чтобы
сумма первых трёх отличалась от суммы вторых трёх меньше, чем на 10.
Дано n чисел, x1, x2, ..., xn, при этом xk = ±1. Доказать, что если x1x2 + x2x3 + ... + xnx1 = 0, то n делится на 4.
Страница:
<< 1 2 3 4 5
6 7 >> [Всего задач: 35]