Страница: 1 [Всего задач: 4]
Задача
79303
(#1)
|
|
Сложность: 3 Классы: 8,9,10,11
|
Какое из двух чисел больше:
а) (n двоек) или (n − 1 тройка);
б) (n троек) или (n − 1 четвёрка).
Задача
79300
(#2)
|
|
Сложность: 3 Классы: 8,9,10
|
В окружность вписан выпуклый 7-угольник. Известно, что какие-то три его угла
равны
120
o. Доказать, что найдутся две его стороны, имеющие
одинаковую длину.
Задача
79304
(#3)
|
|
Сложность: 4 Классы: 7,8,9
|
В последовательности 19752... каждая цифра, начиная с пятой, равна последней цифре суммы предыдущих четырёх цифр. Встретится ли в этой последовательности:
а) набор цифр 1234; 3269; б) вторично набор 1975; в) набор 8197?
Задача
79305
(#4)
|
|
Сложность: 3+ Классы: 9
|
Имеются две страны: Обычная и Зазеркалье. У каждого города в
Обычной стране есть "двойник" в Зазеркалье, и наоборот. Однако если в Обычной стране какие-то два города соединены железной дорогой, то в Зазеркалье эти города не соединены, а каждые два несоединённых в Обычной стране города обязательно соединены железной дорогой в Зазеркалье. В Обычной стране девочка Алиса не может проехать из города A в город B, сделав менее двух пересадок. Доказать, что Алиса в Зазеркалье сможет проехать из любого города в любой другой, сделав не более двух пересадок.
Страница: 1 [Всего задач: 4]