ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 86493

Тема:   [ Показательные неравенства ]
Сложность: 3-
Классы: 8,9,10

Расположите в порядке возрастания числа: 2222; 2222; 2222; 2222; 2222; 2222; 2222. Ответ обоснуйте.
Прислать комментарий     Решение


Задача 79299

Темы:   [ Показательные неравенства ]
[ Индукция (прочее) ]
Сложность: 3
Классы: 8

Какое из двух чисел больше:

  а)     (100 двоек) или     (99 троек);

  б)     (100 троек) или     (99 четвёрок).

Прислать комментарий     Решение

Задача 79303

Темы:   [ Показательные неравенства ]
[ Индукция (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Какое из двух чисел больше:

  а)     (n двоек) или   (n − 1  тройка);

  б)     (n троек) или     (n − 1  четвёрка).

Прислать комментарий     Решение

Задача 65843

Темы:   [ Показательные неравенства ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3+
Классы: 9,10,11

Известно, что число a положительно, а неравенство  10 < ax < 100  имеет ровно пять решений в натуральных числах.
Сколько таких решений может иметь неравенство  100 < ax < 1000?

Прислать комментарий     Решение

Задача 66613

Темы:   [ Показательные неравенства ]
[ Показательные функции и логарифмы (прочее) ]
Сложность: 4
Классы: 10,11

Пользуясь равенством $\lg11=1{,}0413\ldots$, найдите наименьшее число $n>1$, для которого среди $n$-значных чисел нет ни одного, равного некоторой натуральной степени числа 11.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .