Страница: 1 [Всего задач: 4]
Задача
98091
(#1)
|
|
Сложность: 3 Классы: 7,8,9
|
Укажите все такие натуральные n и целые неравные друг другу x и y, при которых верно равенство: x + x² + x4 + ... + x2n = y + y² + y4 + ... + y2n.
На окружности даны точки K и L. Постройте такой треугольник ABC, что KL является его средней линией, параллельной AB,
и при этом точка C и точка пересечения медиан треугольника ABC
лежат на данной окружности.
Задача
98093
(#3)
|
|
Сложность: 4- Классы: 8,9,10
|
На доске выписаны числа 1, ½, ⅓, ..., 1/100. Выбираем из написанных на доске два произвольных числа a и b, стираем их и пишем на доску число
a + b + ab. Такую операцию проделываем 99 раз, пока не останется одно число. Какое это число? Найдите его и докажите, что оно не зависит от последовательности выбора чисел.
Задача
98094
(#4)
|
|
Сложность: 3+ Классы: 8,9,10
|
а) Можно ли расположить пять деревянных кубов в пространстве так, чтобы
каждый имел общую часть грани с каждым? (Общая часть должна быть многоугольником.)
б) Тот же вопрос про шесть кубов.
Страница: 1 [Всего задач: 4]