Страница: 1 [Всего задач: 4]
Задача
98313
(#1)
|
|
Сложность: 2+ Классы: 6,7,8
|
Можно ли найти десять таких последовательных натуральных чисел, что сумма их
квадратов равна сумме квадратов следующих за ними девяти последовательных
натуральных чисел?
Задача
98314
(#2)
|
|
Сложность: 3- Классы: 8,9
|
При каких целых значениях n правильный треугольник со стороной n можно замостить плитками, имеющими форму равнобочной трапеции со сторонами 1, 1, 1, 2?
Задача
98315
(#3)
|
|
Сложность: 3+ Классы: 8,9
|
а) Может ли случиться, что в компании из 10 девочек и 9 мальчиков все девочки знакомы с разным числом мальчиков, а все мальчики – с одним и тем же числом девочек?
б) А если девочек 11, а мальчиков 10?
Задача
98316
(#4)
|
|
Сложность: 3 Классы: 8,9
|
Окружность пересекает каждую сторону ромба в двух точках и делит её на три
отрезка. Обойдём контур ромба, начав с какой-нибудь вершины, по часовой стрелке,
и покрасим три отрезка каждой стороны последовательно в красный, белый и синий
цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих.
Страница: 1 [Всего задач: 4]