Страница:
<< 1 2 [Всего задач: 7]
На клетчатой доске из 2012 строк и k > 2 столбцов в какой-то клетке самого левого столбца стоит фишка. Двое ходят по очереди, за ход можно передвинуть фишку вправо, вверх или вниз на одну клетку, при этом нельзя передвигать фишку на клетку, в которой она уже побывала. Игра заканчивается, как только один из игроков передвинет фишку в самый правый столбец. Но будет ли такой игрок выигравшим или проигравшим – сообщается игрокам только в тот момент, когда фишка попадает в предпоследний столбец (второй справа). Может ли один из игроков обеспечить себе выигрыш?
|
|
Сложность: 3 Классы: 8,9,10
|
Известно, что 0 < a, b, c, d < 1 и abcd = (1 – a)(1 – b)(1 – c)(1 – d). Докажите, что (a + b + c + d) – (a + c)(b + d) ≥ 1.
Страница:
<< 1 2 [Всего задач: 7]