ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 1]      



Задача 66808

Темы:   [ Радикальная ось ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4+
Классы: 9,10,11

Автор: Юдин Ф.

Вписанная окружность $\omega$ треугольника $ABC$ касается его сторон $AC$ и $AB$ в точках $E$ и $F$ соответственно. Точки $X,Y$ на $\omega$ таковы, что $\angle BXC=\angle BYC=90^\circ$. Докажите, что прямые $EF$ и $XY$ пересекаются на средней линии треугольника $ABC$.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .