Страница: 1
2 >> [Всего задач: 8]
Задача
66801
(#9.1)
|
|
Сложность: 3 Классы: 8,9,10,11
|
Внутри прямого угла с вершиной $O$ расположен треугольник $OAB$ с прямым углом $A$. Высота треугольника $OAB$, опущенная на гипотенузу, продолжена
за точку $A$ до пересечения со стороной угла $O$ в точке $M$. Расстояния от точек $M$ и $B$ до второй стороны угла $O$ равны $2$ и $1$ соответственно. Найдите $OA$.
Задача
66802
(#9.2)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Пусть точка $P$ лежит на описанной окружности треугольника $ABC$. Точка $A_1$ симметрична ортоцентру треугольника $PBC$ относительно
серединного перпендикуляра к $BC$. Точки $B_1$ и $C_1$ определяются
аналогично. Докажите, что точки $A_1$, $B_1$ и $C_1$ лежат на одной прямой.
Задача
66803
(#9.3)
|
|
Сложность: 5+ Классы: 9,10,11
|
Четырехугольник $ABCD$, вписанный в окружность $\omega$, таков что $AD=BD=AC$. Точка $P$ движется по $\omega$. Прямые $AP$ и $DP$ пересекают прямые $CD$ и $AB$ в точках $E$ и $F$ соответственно. Прямые $BE$ и $CF$ пересекаются в точке $Q$. Найдите геометрическое место точек $Q$.
Задача
66804
(#9.4)
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Корабль в тумане пытается пристать к берегу. Экипаж не знает, в какой стороне находится берег, но видит маяк, находящийся на маленьком острове в $10$ км от берега, и понимает, что расстояние от корабля до маяка не превышает $10$ км (точное расстояние до маяка неизвестно). Маяк окружен рифами, поэтому приближаться к нему нельзя. Может ли корабль достичь берега, проплыв не больше $75$ км? (Береговая линия – прямая, траектория до начала движения вычерчивается на дисплее компьютера, после чего автопилот ведет корабль по ней.)
Задача
66805
(#9.5)
|
|
Сложность: 3+ Классы: 9,10,11
|
Четырехугольник $ABCD$ описан вокруг окружности радиуса $R$. Пусть $h_1$ и $h_2$ – высоты опущенные из точки $A$ на стороны $BC$ и $CD$ соответственно. Аналогично $h_3$ и $h_4$ – высоты опущенные из точки $C$ на стороны $AB$ и $AD$. Докажите, что
$$
\frac{h_1+h_2-2R}{h_1h_2}=\frac{h_3+h_4-2R}{h_3h_4}.
$$
Страница: 1
2 >> [Всего задач: 8]