Страница:
<< 1 2 3 4 5 [Всего задач: 24]
|
|
Сложность: 4+ Классы: 10,11
|
Можно ли замостить все пространство равными
тетраэдрами, все грани которых — прямоугольные треугольники?
|
|
Сложность: 5 Классы: 9,10,11
|
В коробке лежат карточки, занумерованные натуральными
числами от 1 до 2006. На карточке
с номером 2006 лежит карточка с номером 2005
и т. д. до 1. За ход разрешается взять одну верхнюю
карточку (из любой коробки) и переложить ее либо на дно пустой коробки, либо на
карточку с номером на единицу больше. Сколько пустых коробок нужно для
того, чтобы переложить все карточки в другую коробку?
|
|
Сложность: 5 Классы: 8,9,10
|
Дан треугольник ABC и точки P и
Q, лежащие на его описанной окружности. Точку P отразили
относительно прямой BC и получили точку P_a. Точку
пересечения прямых QP_a и BC обозначим A'. Точки B'
и C' строятся аналогично. Докажите, что точки A', B' и
C' лежат на одной прямой.
|
|
Сложность: 5+ Классы: 9,10,11
|
Все имеющиеся на складе конфеты разных сортов разложены по n коробкам, на которые установлены цены в 1, 2, ..., n у. е. соответственно. Требуется купить такие k из этих коробок наименьшей суммарной стоимости, которые содержат заведомо не менее k/n массы всех конфет. Известно, что масса конфет в каждой коробке не превосходит массы конфет в любой более дорогой коробке.
а) Какие коробки следует купить при n = 10 и k = 3 ?
б) Тот же вопрос для произвольных натуральных n ≥ k.
Страница:
<< 1 2 3 4 5 [Всего задач: 24]