ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Внутри квадрата ABCD выбрана точка M так, что ![]() ![]() 30 учеников одного класса решили побывать друг у друга в гостях. Известно, что ученик за вечер может сделать несколько посещений, и что в тот вечер, когда к нему кто-нибудь должен прийти, он сам никуда не уходит. Покажите, что для того, чтобы все побывали в гостях у всех,
![]() ![]() |
Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 810]
Найти все действительные решения уравнения с 4 неизвестными: x2 + y2 + z2 + t2 = x(y + z + t).
В обращении есть монеты достоинством в 1, 2, 5, 10, 20, 50 копеек и 1 рубль. Известно, что k монетами можно набрать m копеек.
Даны два бикфордова шнура, каждый из которых горит ровно минуту, если его поджечь с одного конца (но сгорать может неравномерно).
Игровое поле представляет собой горизонтальную полоску размером 1×100 клеток. В самой левой клетке стоит фишка. Двое по очереди двигают фишку вправо, причём за один ход разрешается сдвинуть фишку вправо на расстояние от 1 до 10 клеток. Проигрывает тот, кто не может сделать ход (то есть перед его ходом фишка находится в самой правой клетке). Кто выиграет при правильной игре?
На плоскости даны 10 точек: несколько из них – белые, а остальные – чёрные. Некоторые точки соединены отрезками. Назовём точку особой, если более половины соединенных с ней точек имеют цвет, отличный от её цвета. Каждым ходом выбирается одна из особых точек (если такие есть) и перекрашивается в противоположный цвет. Докажите, что через несколько ходов не останется ни одной особой точки.
Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 810] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |