ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Известно, что вруны всегда врут, правдивые всегда говорят правду, а хитрецы могут и врать, и говорить правду. Вы можете задавать вопросы, на которые есть ответ "да" или "нет" (например: "верно ли, что этот человек – хитрец?").
  a) Перед вами трое – врун, правдивый и хитрец, которые знают, кто из них кто. Как и вам это узнать?
  б) Перед вами четверо – врун, правдивый и два хитреца (все четверо знают, кто из них кто). Докажите, что хитрецы могут договориться отвечать так, что вы, спрашивая этих четверых, ни про кого из них не узнаете наверняка, кто он.

   Решение

Задачи

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 810]      



Задача 35087

Тема:   [ Стереометрия (прочее) ]
Сложность: 3
Классы: 9,10,11

Известно, что сумма трех плоских углов при каждой вершине тетраэдра равна 1800. Докажите, что все его грани - равные треугольники.
Прислать комментарий     Решение


Задача 35092

Тема:   [ Признаки делимости на 3 и 9 ]
Сложность: 3
Классы: 8,9

Известно, что натуральное число n в 3 раза больше суммы своих цифр. Докажите, что n делится на 27.

Прислать комментарий     Решение

Задача 35093

Темы:   [ Деление с остатком ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 6,7,8

Если от некоторого трёхзначного числа отнять 6, то оно разделится на 7, если отнять 7, то оно разделится на 8, а если отнять 8, то оно разделится на 9.
Определите это число.

Прислать комментарий     Решение

Задача 35094

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Наименьший или наибольший угол ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 3
Классы: 8,9,10

На окружности отмечено n точек, причём известно, что для каждых двух отмеченных точек одна из дуг, соединяющих их, имеет величину, меньшую 120°. Докажите, что все точки лежат на одной дуге величиной 120°.

Прислать комментарий     Решение

Задача 35101

Тема:   [ Десятичная система счисления ]
Сложность: 3
Классы: 7,8,9

Докажите, что все числа вида 1156, 111556, 11115556,... являются точными квадратами.
Прислать комментарий     Решение


Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 810]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .