Страница: 1 [Всего задач: 5]
Таблица 10×10 заполняется по правилам игры "Сапёр": в некоторые клетки ставят по мине, а в каждую из остальных клеток записывают количество мин в клетках, соседних с данной клеткой (по стороне или вершине). Может ли увеличиться сумма всех чисел в таблице, если все "старые" мины убрать, во все ранее свободные от мин клетки поставить мины, после чего заново записать числа по правилам?
|
|
Сложность: 3+ Классы: 10,11
|
Даны выпуклый многогранник и сфера, которая пересекает каждое ребро многогранника в двух точках. Точки пересечения со сферой делят каждое ребро на три равных отрезка. Обязательно ли тогда все грани многогранника:
а) равные многоугольники;
б) правильные многоугольники?
|
|
Сложность: 4- Классы: 10,11
|
В классе 20 школьников. Было устроено несколько экскурсий, в каждой из которых участвовало хотя бы четверо школьников этого класса.
Докажите, что найдётся такая экскурсия, что каждый из участвовавших в ней школьников принял участие по меньшей мере в 1/17 всех экскурсий.
|
|
Сложность: 4- Классы: 10,11
|
Пусть C(n) – количество различных простых делителей числа n.
а) Конечно или бесконечно число таких пар натуральных чисел (a, b), что a ≠ b и C(a + b) = C(a) + C(b)?
б) А если при этом дополнительно требуется, чтобы C(a + b) > 1000?
|
|
Сложность: 4- Классы: 10,11
|
Из 239 неотличимых на вид монет две – одинаковые фальшивые, а остальные – одинаковые настоящие, отличающиеся от фальшивых по весу. Как за три взвешивания на чашечных весах без гирь выяснить, какая монета тяжелее – фальшивая или настоящая? Сами фальшивые монеты находить не нужно.
Страница: 1 [Всего задач: 5]