Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 43]
На квадратном столе лежит квадратная скатерть так, что ни один угол стола не закрыт, но с каждой стороны стола свисает треугольный кусок скатерти. Известно, что какие-то два соседних куска равны. Докажите, что и два других куска тоже равны. (Скатерть нигде не накладывается сама на себя, её размеры могут отличаться от размеров стола.)
Из кубиков 1×1×1 склеен куб 3×3×3. Какое наибольшее количество кубиков можно из него выкинуть, чтобы осталась фигура с такими двумя свойствами:
- со стороны каждой грани исходного куба фигура выглядит как квадрат 3×3 (глядя перпендикулярно этой грани, мы не увидим просвета – видны 9 кубиков фигуры);
- переходя в фигуре от кубика к кубику через их общую грань, можно от каждого кубика добраться до любого другого?
|
|
Сложность: 4- Классы: 10,11
|
Дан многочлен двадцатой степени с целыми коэффициентами. На плоскости отметили все точки с целыми координатами, у которых ординаты не меньше 0 и не больше 10. Какое наибольшее число отмеченных точек может лежать на графике этого многочлена?
|
|
Сложность: 4 Классы: 9,10,11
|
Каждое ли целое число можно записать как сумму кубов нескольких целых чисел, среди которых нет одинаковых?
|
|
Сложность: 4 Классы: 9,10,11
|
Дан правильный треугольник ABC с центром O. Прямая, проходящая через вершину C, пересекает описанную окружность треугольника AOB в точках D и E. Докажите, что точки A, O и середины отрезков BD, BE лежат на одной окружности.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 43]